
Supplementary material: Influence of regional

tectonics and pre-existing structures on ellip-

tical caldera formation throughout the Kenyan

Rift

Standard Deviational Ellipse function

The Standard Deviational Ellipse function calculates the best-fitting ellipse
from digitised points by first determining the mean centre of all points
{X,Y }. The coordinate system is then transposed with the mean centre
becoming the origin (figure 1A).

Simultaneously for both x- and y-axes (only x-axis example is shown in
figure 1), the deviation of each point is calculated and the standard deviation
determined using the equations,

SDEx =

√∑n
i=1(xi −X)

n
and SDEy =

√∑n
i=1(yi − Y )

n
, (1)

where n is the total number of digitised points (figure 1C).
The axes of the coordinate system are then rotated by angle θ, and

the standard deviation recalculated (figure 1B). To recalculate the stan-
dard deviation, equation 1 is first recalculated using polar co-ordinates i.e.
yi = yicosθ − xisinθ (figure 2B). SDEy from equation 1 then becomes

σy =

√∑n
i=1(yicosθ − xisinθ)2

n
, (2)

where x and y are the deviations of each point from the mean centre,
{X,Y }. The best-fitting ellipse is defined by the angle of rotation, θ, and
lengths of the major and minor axes, both of which are derived from 2.
Arithmetically, the maximum and minimum deviations are calculated by
first expanding equation 2 to

σy =

√∑n
i=1 y

2
i cos2 θ − 2

∑n
i=1 xiyi sin θ cos θ +

∑n
i=1 x

2
i sin2 θ

n
, (3)

and taking the first derivative and solved for 0 (equation 4) to determine
the maximum and minimum values, i.e.
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dσy
dθ

=
−
∑n

i=1 y
2
i cos θ sin θ −

∑n
i=1 xiyi(cos2 θ − sin2 θ) +

∑n
i=1 x

2
i cos θ sin θ

nσyi
= 0.

(4)
The two solutions of equation 4 are therefore the angle of maximum de-

viation and the other, that of the minimum deviation and can be shown in
the form of a quadratic equation,

tan θ =
(
∑n

i=1 x
2
i −

∑n
i=1 y

2
i )± (

√
(
∑n

i=1 x
2
i −

∑n
i=1 y

2
i )

2 + 4(
∑n

i=1 xiyi)
2)

2
∑n

i=1 xiyi
.

(5)
The above equation is used to determine the angle of rotation, θ, of the

ellipse. The standard deviations of the newly-rotated axes are then recalcu-
lated as σx and σy (figure 1C) using the equations,

σx =

√
2

∑n
i=1(xi cos θ − yi sin θ)2

n
and σy =

√
2

∑n
i=1(xi sin θ − yi cos θ)2

n
.

(6)
and represent the length of the major an minor axes. We calculated the

caldera eccentricity, e, by dividing the length of the short axis by the long
axis whereby values close to 1 are near-circular,

e =
σshort
σlong

. (7)

Fault population statistics

The circular mean, circular variance and confidence intervals were calculated
using the CircStat toolbox in Matlab (Berens et al., 2009). The 2θ mean
method for lines (Davis et al., 2002) was used prior to statistical calculations
which is a technique for analysis of azimuthal data that has an orientation
(e.g. E-W) rather than a direction (i.e. values that range between 0-360◦).
This technique doubles the angle of orientation for each fault, calculates the
circular mean of the doubled angles and finally divides the final value by 2
to determine the mean fault orientation.

The mean azimuth of the faults cannot be simply be calculated by aver-
aging the azimuthal data. To illustrate this, figure 2A shows a scenario with
two vectors with azimuths of 345◦ and 15◦. The simple arithmetic mean
would be calculated as (345 + 15)/2 = 180◦, clearly in a direction opposite
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to intuitive mean azimuth of 0◦. Instead we calculate the circular mean by
first converting orientations into radians and transformed into unit vectors
(figure 2B) in the two-dimensional plane by

ri =
cosαi
sinαi

, (8)

these unit vectors ri are then averaged using,

r =
1

n

∑
i

ri. (9)

Graphically the circular mean is calculated by vector addition of all ob-
servations (figure 2C). The result in radians is then transformed into the
mean angular azimuth α using the four quadrant inverse tangent function
(Palm et al., 2005).

We calculate the circular variance, a common measure of dispersion in
angular data, using the equation S = 1− R, where R is the mean resultant
vector length determined by R =‖ r ‖. The variance is bounded by the
interval [0,1] where a values approaching 1 indicates tighter clustering of the
data (Fisher et al., 1995).

The 95% confidence interval for mean orientation is calculated by de-
termining the upper and lower bounds individually. The lower bound is
calculated by L1 = α − d and the upper limit by L2 = α + d where d is
determined by:

for R ≤ 0.9 and R > χ2
δ,1/2N ,

d = arccos

√√√√2N(2R2
n −Nχ2

δ,1)
4N−χ2

δ,1

Rn

, (10)

and where Rn = R.N. and for R > 0.9:

d =

√
N − (N2 −R2

nexp(χ
2
δ,1/N)

Rn

. (11)

Plate motion azimuthal uncertainty

The modern plate-kinematic model of Stamps et al. (2008) is used to calcu-
late the relative plate motion vector at each caldera. Here we propagate the
uncertainties associated with the published Victoria-Somalia Euler pole in
order to assess the azimuthal velocity uncertainty. The Euler pole is defined
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in terms of longitude (λ), latitude (φ) and rotation rate (ω̇), and the associ-
ated uncertainties are defined by an error ellipse with a semi-major axis (a),
semi-minor axis (b) and azimuth (α), clockwise from north to the semi-major
axis. The rotation rate uncertainty is given as σω̇.

In order to calculate the azimuthal velocity uncertainty, first we express
the Euler pole error ellipse as a rotation rate covariance matrix in geodetic
coordinates. The principal axes of the Euler poles error ellipse may be written
in terms of a diagonalized partial covariance matrix,

Σ′
ω̇′ =

(
a2 0
0 b2

)
,

which is rotated from a regular geodetic coordinate system (λ,φ,r) using the
equation (

a2 0
0 b2

)
= A

(
σ2
λ σλφ

σφλ σ2
φ

)
AT

where A is a rotation matrix given by

A =

(
sinα cosα
− cosα sinα

)
Given that A−1 = AT and covariances between the Euler pole location

and rotation rate are unknown (so assumed to be zero), the three-dimensional
rotation rate covariance matrix in geodetic coordinates is expanded to

Σω̇′ =

 σ2
λ σλφ 0

σφλ σ2
φ 0

0 0 σ2
ω̇

 =

(
ATΣ′

ω̇′A 0
0 σ2

ω̇

)
Next, we propagate this covariance matrix through the plate rotation

equation, v = ω̇×p, where v is the velocity at a point defined by position
vector p and ω̇ is the rotation rate vector. This step is calculated after rotat-
ing the covariance matrix in geodetic coordinates (Σω̇′) to Earth-centered,
Earth-fixed (ECEF) Cartesian (x,y,z) coordinates (Σω̇) by

Σω̇ = JΣω̇′JT

where J is a Jacobian matrix given by all first-order partial derivatives of the
Cartesian components of the rotation rate vector with respect to the geodetic
components. Expanding the vector product of the plate rotation equation
and rewriting in matrix-multiplication form, v = Pω̇, provides a means by
which to use the law of covariance propagation, i.e.

Σv = RΣω̇RT
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This relative plate motion vector (v) and associated covariance matrix (Σv)
at a given caldera location may then expressed in local Cartesian (e,n,u)
coordinate system by applying the rotation matrix

R =

 − sinλp cosλp 0
− sinφp cosλp − sinφp sinλp cosφp

cosφp cosλp cosφp sinλp sinφp


where λp and φp are the longitude and latitude, respectively, of the position
vector for the point at which the relative velocity and uncertainties are being
calculated. That is, v′ = Rv and Σv′ = RΣvRT where v′ and Σv′ are
expressed in the local Cartesian coordinate system.

Finally, we calculate the point error in the direction perpendicular to the
plate motion velocity vector to obtain the azimuthal velocity uncertainty.
We express the velocity vector and associated covariance matrix in a local
cylindrical coordinate system (r,θ,u) by applying another Jacobian matrix
(J′) relating the components of the two coordinate systems. The equation
for the velocity vector in local cylindrical coordinates is then

v′′ = J′v′J′T = J′ (Rv) J′T

and the associated covariance matrix is

Σv′′ = J′Σv′J′T = J′ (RΣvRT
)
J′T

The azimuthal velocity uncertainty (σvθ) is the square root of the variance
in the θ component.

References

5



SDE
x

SDE
x{X,Y}

θ
σ
x

A B

C D

Find the mean centre of all points
Find the standard devation of points 

from y-axis. Repeat for x-axis.

Rotate the axes by θ and "nd new 

standard devation along axes  
Ellipse parameters are de"ned 

using θ, σ
x
 and σ

y
.

σ
x

θ

σ
x

σ
y

Figure 1: Methodology of ESRI Standard Deviational Ellipse tool for ArcGIS.
Firstly, calderas are digitised as a polyline shape layer and converted into
point-data at polyline vertices. A The mean centre, {X,Y }, of all points are
calculated and the origin of a coordinate system is transposed to the mean
centre. B The standard deviation of points from the y-axis is determined
(SDEx). C The axes are rotated by θ (see text for calculation) and the
standard deviation of all points from the newly rotated y-axis is recalculated
and plotted (σy and σx). D The best-fitting ellipse is defined using σy, σx as
lengths of the major and minor axes and the rotation angle θ.
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Figure 2: Visualisation of circular statistics used to analyse fault orienta-
tion. A shows two vectors at 345◦ and 15◦ and the associated (incorrect)
arithmetic mean at 180◦ (dashed line) where the correct mean lies at 0◦.
B describes the relationship between Cartesian and Polar coordinates that
in used in coordinate conversion. Calculation of the circular mean, C, is
approached by treating each observation as a unit vector and using vector
addition to calculate the resultant vector. The mean azimuth is calculated
by the direction of the resultant vector.
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